A hyperparasite affects the population dynamics of a wild plant pathogen

نویسندگان

  • C Tollenaere
  • B Pernechele
  • H S Mäkinen
  • S R Parratt
  • M Z Németh
  • G M Kovács
  • L Kiss
  • A J M Tack
  • A-L Laine
چکیده

Assessing the impact of natural enemies of plant and animal pathogens on their host's population dynamics is needed to determine the role of hyperparasites in affecting disease dynamics, and their potential for use in efficient control strategies of pathogens. Here, we focus on the long-term study describing metapopulation dynamics of an obligate pathogen, the powdery mildew (Podosphaera plantaginis) naturally infecting its wild host plant (Plantago lanceolata) in the fragmented landscape of the Åland archipelago (southwest Finland). Regionally, the pathogen persists through a balance of extinctions and colonizations, yet factors affecting extinction rates remain poorly understood. Mycoparasites of the genus Ampelomyces appear as good candidates for testing the role of a hyperparasite, i.e. a parasite of other parasites, in the regulation of their fungal hosts' population dynamics. For this purpose, we first designed a quantitative PCR assay for detection of Ampelomyces spp. in field-collected samples. This newly developed molecular test was then applied to a large-scale sampling within the Åland archipelago, revealing that Ampelomyces is a widespread hyperparasite in this system, with high variability in prevalence among populations. We found that the hyperparasite was more common on leaves where multiple powdery mildew strains coexist, a pattern that may be attributed to differential exposure. Moreover, the prevalence of Ampelomyces at the plant level negatively affected the overwinter survival of its fungal host. We conclude that this hyperparasite may likely impact on its host population dynamics and argue for increased focus on the role of hyperparasites in disease dynamics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Population Dynamics of Sugar Beets, Rhizoctonia solani, and Laetisaria arvalis: Responses of a Host, Plant Pathogen, and Hyperparasite to Perturbation in the Field.

Rhizoctonia solani causes crown rot of sugar beets, a severe disease that has destroyed up to 60% of the plants in a test field in western Nebraska. Laetisaria arvalis, a natural hyperparasite of Rhizoctonia spp., was isolated from fields in western Nebraska. To test for the potential for biological control of R. solani, in November 1980 (following harvest) we applied various combinations of a ...

متن کامل

Local adaptation at higher trophic levels: contrasting hyperparasite–pathogen infection dynamics in the field and laboratory

Predicting and controlling infectious disease epidemics is a major challenge facing the management of agriculture, human and wildlife health. Co-evolutionarily derived patterns of local adaptation among pathogen populations have the potential to generate variation in disease epidemiology; however, studies of local adaptation in disease systems have mostly focused on interactions between competi...

متن کامل

A preliminary threshold model of parasitism in the Cockle\emph{Cerastoderma edule} using delayed exchange of stability

Thresholds occur, and play an important role, in the dynamics of many biological communities. In this paper, we model a persistence type threshold which has been shown experimentally to exist in hyperparasitised flukes in the cockle, a shellfish. Our model consists of a periodically driven slow-fast host-parasite system of equations for a slow flukes population (host) and a fast Unikaryon hyper...

متن کامل

Population dynamics and sex ratio of a parasitoid altered by fungal-infected diet of host butterfly.

Variation of host quality affects population dynamics of parasitoids, even at the landscape scale. What causes host quality to vary and the subsequent mechanisms by which parasitoid population dynamics are affected can be complex. Here, we examine the indirect interaction of a plant pathogen with a parasitoid wasp. Under laboratory conditions, parasitoids from hosts fed fungus-infected plants w...

متن کامل

Biological control of Fusarium root rot of bean with two Trichoderma species and Pseudomonas fluorescens

Rostami A, Sadravi M, Rezaei R, Abdollahi M (2020) Biological control of Fusarium root rot of bean with two Trichoderma species and Pseudomonas fluorescens. Plant Pathology Science 9(2): 14-27.  Doi: 10.2982/PPS.9.2.14   Introduction: Fusarium root rot with damage reported up to 85% of the crop yield, caused by Fusarium solani f. sp. phaseoli, is one of the most important bean diseases in the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 23  شماره 

صفحات  -

تاریخ انتشار 2014